

Unravelling AKT2 Signallingin Cancer throughNanobody Technology

Tijs Merckaert

Summary of the thesis

Protein Kinase B (AKT) is a central node in one of the most frequently dysregulated signalling pathways in human cancer, which makes this kinase a promising therapeutic target. However, AKT comes in three closely-related isoforms (AKT1, AKT2 and AKT3) that are non-redundant and can even have opposing functions. There is little consensus on which isoform should be targeted for cancer therapy, and there are no tools available that can inhibit a single AKT isoform.

The main goal of this thesis is to develop tools that can be used to interfere with a single AKT isoform in cells, to study isoform-specific signalling and validate AKT isoforms as a target for cancer therapy.

To achieve this, Nanobodies were generated for the AKT isoforms. After a stringent screening, where specificity for a single AKT isoform was the key criterion, AKT1- and AKT2-specific Nanobodies were obtained. Due to its role in promoting the metastasis of breast cancer cells, AKT2 became the main focus of the thesis. By using our AKT2 Nbs as a research tool we were able to map a part of AKT2's signalling cascade, strengthened AKT2 as a bona fide target for cancer therapy and established the importance of the hydrophobic motif for AKT2 signal transduction. These Nanobodies could aid in the rational design of an isoform-specific AKT2 inhibitor.

This thesis provides new tools that can be used to study AKT isoforms in cells, advocates the use of complementary techniques to study protein function and demonstrates the value of Nanobody technology as a research tool in fundamental research.

You are cordially invited to the public PhD defence of Tijs Merckaert

Which will take place online on the **21**st of April at **16h00 (GMT+1)**

At the following URL:

https://teams.microsoft.com/l/meetupjoin/19%3ameeting_MWQ4MGE0ZjQtZTAwOS00MGVlL WJlZjltOTMzMWEwYmI5OGQ3%40thread.v2/0?context =%7b%22Tid%22%3a%22d7811cde-ecef-496c-8f91a1786241b99c%22%2c%22Oid%22%3a%22f06f3bc8-23c0-492c-9220-20f808670a48%22%7d

Electronic version of the thesis

Ugent biblio or on request (see contact information)

Acknowledgements

This work was supported by an FWO PhD fellowship for Strategic Basic Research, VIB vzw, Ghent University and was conducted at the VIB-UGent Center for Medical Biotechnology and the UGent Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences.

Promoters

Prof. Dr. Jan Gettemans¹ Prof. Dr. Kris Gevaert^{1,2}

Examination committee

Prof. Dr. Jolanda van Hengel³

Prof. Dr. Mark Rider⁴

Dr. Els Beghein⁵

Dr. Pieter Rondou¹

Dr. Joni Van der Meulen¹

Dr. Inna Afonina^{6,7}

Affiliations

¹Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium

²VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium

³Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium

⁴Institut de Duve, Université catholique de Louvain, Brussels, Belgium

⁵Federal Agency for Medicines and Health Products, Brussels, Belgium ⁶Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium

⁷Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium

Key publications

Merckaert T, Zwaenepoel O, Gevaert K, Gettemans J. **Development and characterization of protein kinase B/AKT isoform-specific nanobodies**. PLoS ONE **15**:10 (2020).

Merckaert T, Zwaenepoel O, Gevaert K, Gettemans J. An AKT2-specific nanobody that targets the hydrophobic motif induces cell cycle arrest, autophagy and loss of focal adhesions in MDA-MB-231 cells. Biomedicine & Pharmacotherapy 133:111055 (2021).

Curriculum vitae

2016-2021: PhD student (VIB-Ugent)

2013-2015: Master in Biomedical Sciences (Ugent)

2010-2013: Bachelor in Biomedical Sciences (Ugent)

CONTACT INFORMATION

Tijs.Merckaert@ugent.be
Nanobody Lab
UGent Department of Biomolecular Medicine
VIB-Ugent Center for Medical Biotechnology
www.ugent.be
www.cmb.vib.be

